Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Mol Genet Genomic Med ; 12(3): e2405, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444283

ABSTRACT

BACKGROUND: Treacher Collins Ι syndrome (TCS1, OMIM:154500) is an autosomal dominant disease with a series of clinical manifestations such as craniofacial dysplasia including eye and ear abnormalities, small jaw deformity, cleft lip, as well as repeated respiratory tract infection and conductive hearing loss. Two cases of Treacher Collins syndrome with TCOF1(OMIM:606847) gene variations were reported in the article, with clinical characteristics, gene variants and the etiology. METHODS: The clinical data of two patients with Treacher Collins syndrome caused by TCOF1 gene variation were retrospectively analyzed. The whole exome sequencing (WES) was performed to detect the pathogenic variants of TCOF1 gene in the patients, and the verification of variants were confirmed by Sanger sequencing. RESULTS: Proband 1 presented with bilateral craniofacial deformities, conductive hearing loss and recurrent respiratory tract infection. Proband 2 showed bilateral craniofacial malformations with cleft palate, which harbored similar manifestations in her family. She died soon after birth due to dyspnea and feeding difficulties. WES identified two novel pathogenic variants of TCOF1 gene in two probands, each with one variant. According to the American College of Medical Genetics and Genomics, the heterozygous variation NM_001371623.1: c.877del (p. Ala293Profs*34) of TCOF1 gene was detected in Proband 1, which was evaluated as a likely pathogenic (LP) and de novo variant. Another variant found in Proband 2 was NM_001135243.1: c.1660_1661del (p. D554Qfs*3) heterozygous variation, which was evaluated as a pathogenic variation and the variant inherited from the mother. To date, the two variants have not been reported before. CONCLUSION: Our study found two novel pathogenic variants of TCOF1 gene and clarified the etiology of Treacher Collins syndrome. We also enriched the phenotypic spectrum of Treacher Collins syndrome and TCOF1 gene variation spectrum in the Chinese population, and provided the basis for clinical diagnosis, treatment and genetic counseling.


Subject(s)
Mandibulofacial Dysostosis , Respiratory Tract Infections , Female , Humans , China , Hearing Loss, Conductive , Mandibulofacial Dysostosis/genetics , Nuclear Proteins/genetics , Phosphoproteins/genetics , Retrospective Studies
2.
Clin Chem ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517460

ABSTRACT

BACKGROUND: Optical genome mapping (OGM) is a novel assay for detecting structural variants (SVs) and has been retrospectively evaluated for its performance. However, its prospective evaluation in prenatal diagnosis remains unreported. This study aimed to prospectively assess the technical concordance of OGM with standard of care (SOC) testing in prenatal diagnosis. METHODS: A prospective cohort of 204 pregnant women was enrolled in this study. Amniotic fluid samples from these women were subjected to OGM and SOC testing, which included chromosomal microarray analysis (CMA) and karyotyping (KT) in parallel. The diagnostic yield of OGM was evaluated, and the technical concordance between OGM and SOC testing was assessed. RESULTS: OGM successfully analyzed 204 cultured amniocyte samples, even with a cell count as low as 0.24 million. In total, 60 reportable SVs were identified through combined OGM and SOC testing, with 22 SVs detected by all 3 techniques. The diagnostic yield for OGM, CMA, and KT was 25% (51/204), 22.06% (45/204), and 18.14% (37/204), respectively. The highest diagnostic yield (29.41%, 60/204) was achieved when OGM and KT were used together. OGM demonstrated a concordance of 95.56% with CMA and 75.68% with KT in this cohort study. CONCLUSIONS: Our findings suggest that OGM can be effectively applied in prenatal diagnosis using cultured amniocytes and exhibits high concordance with SOC testing. The combined use of OGM and KT appears to yield the most promising diagnostic outcomes.

3.
Front Genet ; 12: 791869, 2021.
Article in English | MEDLINE | ID: mdl-35154245

ABSTRACT

Isobutyryl-CoA dehydrogenase deficiency (IBDHD, MIM: #611283) is a rare autosomal recessive hereditary disease, which is caused by genetic mutations of acyl-CoA dehydrogenase (ACAD) 8 and associated with valine catabolism. Here, tandem mass spectrometry (MS/MS) was applied to screen 302,993 neonates for inherited metabolic diseases (IMD) in Ningbo of China from 2017 to 2020. The results suggest that 198 newborns (0.7‰) were initially screened positive for IBDHD with C4-Carnitine, and 27 cases (0.1‰) were re-screened positive. Genetic diagnosis was performed on 21 of the 27 cases. Seven compound heterozygous variations, three biallelic variations, and one heterozygous variation of ACAD8 were found with a pathogenicity rate of 33.3% (7/21). In addition, seven biallelic variations, one heterozygous variation of acyl-CoA dehydrogenase short chain (ACADS), and one biallelic variation of acyl-CoA dehydrogenase short/branched chain (ACADSB) was detected. Further research showed that ACAD8 mutations of 11 IBDHD cases distributed in six different exons with total 14 mutation sites. Five of which were known suspected pathogenic sites (c.286G > A, c.553C > T, c.1000C > T, c.409G > A, c.500del) and six were novel mutation sites: c.911A > T, c.904C > T, c.826G > A, c.995T > C, c.1166G > A, c.1165C > T. This finding enriched the mutation spectrum of ACAD8 in IBDHD.

4.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(5): 482-487, 2020 May.
Article in Chinese | MEDLINE | ID: mdl-32434645

ABSTRACT

This article reports the clinical and genetic features of two cases of cerebral creatine deficiency syndrome I (CCDSI) caused by SLC6A8 gene mutations. Both children were boys. Boy 1 (aged 2 years and 10 months) and Boy 2 (aged 8 years and 11 months) had the clinical manifestations of delayed mental and motor development, and convulsion. Their older brothers had the same symptoms. The mother of the boy 1 had mild intellectual disability. The genetic analysis showed two novel homozygous mutations, c.200G>A(p.Gly67Asp) and c.626_627delCT(p.Pro209Argfs*87), in the SLC6A8 gene on the X chromosome, both of which came from their mothers. These two novel mutations were rated as possible pathogenic mutations and were not reported in the literature before. This study expands the mutation spectrum of the SLC6A8 gene and has great significance in the diagnosis of boys with delayed development, and epilepsy.


Subject(s)
Mutation , Nerve Tissue Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Child , Child, Preschool , Creatine , Epilepsy , Genetic Testing , Humans , Male , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...